skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lucero, Jacob E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Positive interactions can drive the assembly of desert plant communities, but we know little about the species-specificity of positive associations between native shrubs and invasive annual species along aridity gradients. These measures are essential for explaining, predicting, and managing community-level responses to plant invasions and environmental change. Here, we measured the intensity of spatial associations among native shrubs and the annual plant community—including multiple invasive species and their native neighbors—along an aridity gradient across the Mojave and San Joaquin Deserts, United States. Along the gradient, we sampled the abundance and species richness of invasive and native annual species using 180 pairs of shrub and open microsites. Across the gradient, the invasive annuals Bromus madritensis ssp. rubens ( B. rubens ), B. tectorum , B. diandrus, Hordeum murinum , and Brassica tournefortii were consistently more abundant under shrubs than away from shrubs, suggesting positive effects of shrubs on these species. In contrast, abundance of the invasive annual Schismus spp. was greater away from shrubs than under shrubs, suggesting negative effects of shrubs on this species. Similarly, native annual abundance (pooled) and native species richness were greater away from shrubs than under shrubs. Shrub-annual associations were not influenced by shrub size or aridity. Interestingly, we found correlative evidence that B. rubens reduced native abundance (pooled), native species richness, and exotic abundance (pooled) under, but not away from shrubs. We conclude that native shrubs have considerable potential to directly (by increasing invader abundance) and indirectly (by increasing negative impacts of invaders on neighbors) facilitate plant invasions along broad environmental gradients, but these effects may depend more upon invader identity than environmental severity. 
    more » « less
  2. Lambrinos, John (Ed.)
  3. Abstract The enemy release hypothesis (ERH) of plant invasion asserts that natural enemies limit populations of invasive plants more strongly in native ranges than in non‐native ranges. Despite considerable empirical attention, few studies have directly tested this idea, especially with respect to generalist herbivores. This knowledge gap is important because escaping the effects of generalists is a critical aspect of the ERH that may help explain successful plant invasions. Here, we used consumer exclosures and seed addition experiments to contrast the effects of granivorous rodents (an important guild of generalists) on the establishment of cheatgrass (Bromus tectorum) in western Asia, where cheatgrass is native, versus the Great Basin Desert, USA, where cheatgrass is exotic and highly invasive. Consistent with the ERH, rodent foraging reduced cheatgrass establishment by nearly 60% in western Asia but had no effect in the Great Basin. This main result corresponded with a region‐specific foraging pattern: rodents in the Great Basin but not western Asia generally avoided seeds from cheatgrass relative to seeds from native competitors. Our results suggest that enemy release from the effects of an important guild of generalists may contribute to the explosive success of cheatgrass in the Great Basin. These findings corroborate classic theory on enemy release and expand our understanding of how generalists can influence the trajectory of exotic plant invasions. 
    more » « less
  4. Abstract The enemy release hypothesis (ERH) attributes the success of some exotic plant species to reduced top‐down effects of natural enemies in the non‐native range relative to the native range. Many studies have tested this idea, but very few have considered the simultaneous effects of multiple kinds of enemies on more than one invasive species in both the native and non‐native ranges. Here, we examined the effects of two important groups of natural enemies–insect herbivores and soil biota–on the performance ofTanacetum vulgare(native to Europe but invasive in the USA) andSolidago canadensis(native to the USA but invasive in Europe) in their native and non‐native ranges, and in the presence and absence of competition.In the field, we replicated full‐factorial experiments that crossed insecticide,T. vulgare–S. canadensiscompetition, and biogeographic range (Europe vs. USA) treatments. In greenhouses, we replicated full‐factorial experiments that crossed soil sterilization, plant–soil feedback, and biogeographic range treatments. We evaluated the effects of experimental treatments onT. vulgareandS. canadensisbiomass.The effects of natural enemies were idiosyncratic. In the non‐native range and relative to populations in the native range,T. vulgareescaped the negative effects of insect herbivores but not soil biota, depending upon the presence ofS. canadensis; andS. canadensisescaped the negative effects of soil biota but not insect herbivores, regardless of competition. Thus, biogeographic escape from natural enemies depended upon the enemies, the invader, and competition. Synthesis:By explicitly testing the ERH in terms of more than one kind of enemy, more than one invader, and more than one continent, this study enhances our nuanced perspective of how natural enemies can influence the performance of invasive species in their native and non‐native ranges. 
    more » « less